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Protection of ancient silk textiles from further deterioration is of vital importance to the investigation
and preservation of ancient Chinese culture. Ancient silk textiles from several different ages (more than
2000 years ago) and regions were studied by means of Raman and electron paramagnetic resonance
(EPR) spectroscopy in an attempt to unveil the deterioration mechanism of silk. The Raman spectra
showed two peaks (D and G), which are indicative of carbonization. The EPR spectra of the ancient
samples showed a characteristic sharp absorption centered at gw2.0037 without a hyperfine structure,
and have been identified as those of carbon radicals. These free radicals had not been discovered in
ancient silk fabrics before, and the discovery may shed light on the deterioration mechanisms of ancient
silk textiles.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Silks, the major trade along the known “Silk Road”, have written
a magnificent page in the history of ancient Chinese civilization.
However, only a small amount of ancient silks have survived after a
long burial period, suffering from discoloration, low strength, etc.
Therefore, it is of urgency to prevent these invaluable relics from
further deteriorating.

Raw silk is composed of silk fibroin and sericin, two types of
proteins consisting of C, H, O, N, S, etc. secreted by the silkworm.
The role of sericin is mainly to envelop the fibroin, providing pro-
tections to the latter [1e3]. Silk textiles, however, are generally
made of silks that have undergone a degumming process in which
most of the sericin has been removed. As a result, silk textiles are
damageable since fibroin is susceptible to different ambient factors,
e.g. light, heat, water, and microorganisms [4,5]. In the literature,
the artificial degradation behaviors induced by these factors are
investigated in series. For example, amino acids in fibroin, such as
glycine, alanine, tyrosine and serine, were photo-oxidized under
UV-irradiation, resulting in a-ketoacyl groups [6]; silk fibers were
carbonized and became amorphous when exposed to 570 K heating
treatment while fibroin heavy chain (FibH, 350 kDa) and fibroin
light chain (FibL, 26 kDa) started to degrade atw350 K andw400 K,
respectively [7]; in the enzymatic degradation process, b-sheet silk
2.
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crystals were first degraded into nanofibrils and finally nanofila-
ments and soluble silk fragments [8]. This enzymatic degradation
mechanism was related to the hydrophilic interaction and crystal-
noncrystal alternate nanostructures [9]. These aforementioned
experiments were performed artificially on the modern silk textiles
with respect to a single factor, which is hardly to simulate the
complicate process of deterioration of ancient silk textiles under
the natural burial environments. Thus, investigating the deterio-
ration of ancient silks is quite meaningful to the conservation of
such textile heritages. To date, various methods, e.g. the diluted
solution viscometry [4,5], amino acid analysis [4,10,11], scanning
electron microscope (SEM) [12,13], Fourier Transform infrared
spectroscopy (FT-IR) [13e16] and X-ray diffraction (XRD) [17,18],
etc., have been utilized in the characterization of silk degradation at
the holistic level. In addition, electron paramagnetic resonance
(EPR) spectroscopy, a non-destructive method to detect the pres-
ence of the unpaired electron(s), can be employed to investigate the
deterioration kinetics of proteins at the electronic and atomic level
and probe the radical chemistry [19]. It has proved a powerful
technique to trace the free radical(s) of artificially aged proteins
caused by gamma-ray [20,21] and ultraviolet irradiation [22,23]. It
was expected that EPRwould also prove effective in the research on
free radicals in ancient silk textiles, the species and even the exis-
tence of which had not yet been determined.

In this paper, the deterioration behaviors of three ancient silk
textiles made between 403 B.C. and 9 A.D. and unearthed from
different regionswere studiedviaRamanandEPRspectroscopyusing
a modern silk fragment as a control. The results demonstrate that
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carbonradical is takingpart in thedeteriorationprocess. Thedatawill
shed lighton thedeteriorationmechanismof ancient silk textiles and
pave the way for better preserving these textile heritages.

2. Materials and methods

2.1. Ancient and modern silk textiles

The three ancient samples investigated are debris of silk textiles
unearthed from Baling Mount, Jingzhou, Hubei Province, Lu’an,
An’hui Province and Tianshan, Yangzhou, Jiangsu Province, denoted
by Jingzhou (JZ), Lu’an “huangwei (coffin covering)” (LA) and
Yangzhou (YZ), respectively. JZ and LA were traced back to the
Warring States Period (403 B.C.e221 B.C.) and YZ to the Western
Han Dynasty (202 B.C.e9 A.D.). Commercially available modern silk
from Guanghua Silk Co. Ltd., Hefei City is used as control sample. It
is worth noting that LA sample was collected from the debris of
huangwei, the cover on the coffin (No. M585) with 184.5 cm in
length and 88 cm in width. Such full-size huangwei from the
Warring States Period is extremely rare throughout the country.

2.2. Characterization techniques

The samples were observed and pictured by KEYENCE VHX-
2000C imaging optical microscope (KEYENCE Co., LTD, Japan).
Raman spectroscopy analyses were performed at ambient tem-
perature using the LABRAM-HR confocal microscopy laser Raman
spectrometer (JY Co., France) equipped with a 514.5 nm argon ion
laser with beam power of 1 mW. The spectra were recorded in the
wavelength range of 500 cm�1e2000 cm�1. For EPRmeasurements,
10mg of each samplewas collected and placed into standard quartz
EPR tubes. The EPR spectra were performed with a Japanese JEOL
JES-FA200 EPR spectrometer at room temperature. The parameters
were the microwave frequency of 9.06 GHz, the microwave power
of 0.998 mW, and the modulation amplitude of 0.35 mT.
Fig. 1. Morphologies of the (a) modern control,
3. Results and discussions

3.1. The morphological comparison

Morphological differences between the four samples mentioned
above were studied by the optical microscope. The fabric structure
and color are shown in Fig. 1aed. The modern control sample is a
crepe de chine fabric (Fig. 1a) and the JZ silk textile has a plain-
woven structure with indistinct fabric density (Fig. 1b). As shown
in Fig. 1c, the structure of LA is warp backed-woven with warp
thread of 95 cm�1 and weft thread of 56 cm�1. The YZ sample,
which is also a plain-woven textile, shows distinct fabric density of
warp and weft thread being 120 cm�1 and 80 cm�1 (Fig. 1d),
respectively. The color is one of the visual degradation character-
istics of the undyed silk, which darkens with the increasing of the
degree of deterioration [24,25]. As depicted in the figure, the
original color of silk (modern control sample) is white, however, it
changes to light brown, dark brown and then black of JZ, LA and YZ
ancient silks, respectively. Furthermore, the dyes of these debris of
ancient silk textiles have been investigated via liquid
chromatography-mass spectrometry and no colorant was found.
Thus, the darkened color indicates that the JZ silk is the least aged
and the YZ is the most decayed one. Noteworthily, breakage
occurred on the edge of the YZ sample (data not shown) due to its
fragility while others felt more elastic upon touching. It is reason-
able to speculate that the abnormal degradation degree of YZ
sample (the youngest but the most deteriorated) resulted from the
different burial environments since buried silks are sensitive to
heat, water, microorganisms, etc. of the tomb.
3.2. The Raman spectroscopy analysis

It is well established that Raman spectroscopy is a powerful
technique to probe the carbonization of the silk fibroin [26e28].
The Raman spectra obtained from the four samples are shown in
(b) JZ, (c) LA and (d) YZ textile fragments.



Fig. 3. EPR spectra of the modern control sample (Control) and three ancient silk
textiles (JZ, LA and YZ).
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Fig. 2. The data shows that spectra of the three ancient silk textiles
have two resolved characteristic peaks at w1360 cm�1 (termed D)
and w1590 cm�1 (termed G), which are absent in the control
sample. The two peaks are the standard features of carbonization:
peak D originating from the A1g mode of a crystal lattice is induced
by the particle size effect of small graphite crystals, and peak G
originating from the E2g species of the infinite crystal is a charac-
teristic of the large single-crystal graphite [29]. The intensities of
these two peaks increase monotonously in the spectra of the con-
trol, JZ, LA and YZ samples, implying the increasing degree of
carbonization in the four silks. However, the Raman spectroscopy is
inappropriate to study the carbonization behavior quantitatively
via the signal amplitude due to the light dispersion and
penetration.

3.3. The EPR spectroscopy analysis

The apparent morphological changes and Raman spectra in the
four silk textiles indicate that the deterioration of the ancient
samples is related to the carbonization of textiles during the long
burial period. However, further in-depth information upon the
carbonization process is not provided, namely, the kinetics of the
carbonization. Therefore, EPR spectroscopy is employed and the
results are shown in Fig. 3. All the EPR spectra have the same
resolved characteristic absorption peak centered at the highly
isotropic g-factor of 2.0037, indicating that the signals originate
from the cubic symmetry of the radical center. Moreover, these
single curves without hyperfine structure suggest that the spin
density is localized at the atom(s) possessing the zero nuclear spin
and the common stable paramagnetic metal species, e.g. Mn2þ,
Cu2þ and Fe3þ, are excluded due to the peak-to-trough width
(w1 mT) of the curves. Accordingly, the EPR spectra are assigned to
that of the carbon radical. In addition, the unpaired electron is
localized in the carbon radicals in the textile matrix according to
the narrow peak-to-trough width and the slight asymmetry of the
spectra [30]. Considering the identical sample weight, the con-
centrations of the radicals can be characterized by the signal in-
tensity which is the weakest in JZ and the strongest in YZ in the
three ancient silks. For the modern control sample, the intensity is
close to the background noise level. The variation in concentration
of the formed radicals is coincided with both the color change in
Fig. 1 and the degree of carbonization shown in Fig. 2. Namely, the
consecutive deterioration of the ancient silk textiles is concomitant
with the accumulation of carbon radicals.

In order to clarify the formation kinetics of the radical, the
cleavage of the peptide bonds in the silk fibroin is given in Fig. 4,
Fig. 2. Raman spectra of the modern control sample (Control), JZ, LA and YZ silk
textiles, where the peaks D and G are indicated by arrows. Longitudinal shifts of 5%,
10% and 10% are performed for JZ, LA and YZ curves, respectively. The intensity of YZ
sample is divided by a factor of 3 in order to fit with the other three ones.
where the three homolytic cleavage sites are indicated by①,② and
③, respectively. i) If a homolytic cleavage occurs at site ①, the
hyperfine structures originating from the magnetic interaction
between the spin of electron and nuclear will be observed due to
the 14N (nuclear spin I¼ 1) in the formed free radicals 1 and 2. Thus
it leads to three-band (2Iþ1 ¼ 3) hyperfine structure, and the
proton (1H, I ¼ 1/2) ligated to the carbon radical center in the free
radical 1 will complicate the hyperfine structure in the EPR spec-
trum. ii) In the case of site ②, an EPR spectrum without hyperfine
structure will be detected originating from free radical 3, while the
radical 4, a 14N centered radical, is expected to have the resolved
hyperfine structure from 1H and 14N. iii) At site ③, the radical 5 is
also the 14N centered radical similar to the radical 4 and the radical
6 has the hyperfine interaction with the direct 1H ligand. It should
be noted that other radicals, such as the oxygen-, nitrogen- and
sulfur-centered radicals and the radical cations derived from
saturated hydrocarbons, are highly reactive oxidizing species and
short-lived in the ambient aerobic environment [31,32]. In sum-
mary, the homolytic cleavage of peptide bonds at the site ② is
preferred in the case of a single step reaction, and the radical 3will
give rise to the EPR spectrumwithout hyperfine structure. Actually,
silk degradation is a complicated process with various chemical
bonds ruptured simultaneously [5,33]. However, only the stable
carbon radical lasts and accumulates upon the long time history. A
careful comparison was performed between the EPR signals of the
Fig. 4. Scheme of chemical structures of possibly formed radicals in ancient silk tex-
tiles. The corresponding three cleavage sites are denoted as ①, ② and ③.
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ancient silk textiles and coal. The corresponding features herein, i.e.
the highly isotropic gw2.0037, the peak-to-trough width ofw1 mT
and the slightly asymmetric spectral shape, are almost identical to
those obtained from coal [34e36].

4. Conclusions

In summary, three ancient silk textiles of more than 2000 years
were investigated and their degradation mechanismwas discussed
by means of Raman and EPR spectroscopy. The differences in color
indicate that the degree of degradation of the JZ, LA and YZ samples
are quite different due to the changed burial environments. Peaks D
and G in the Raman spectra suggest that these ancient silk textiles
have been carbonized. Furthermore, carbon free radicals were
found using the EPR method. Basing on the absence of hyperfine
structure, the peak-to-trough line width of w1 mT and the slight
asymmetry of the EPR spectra, the degradation of silk fibroin is a
process of free radical chemistry. The present work may help ach-
ieve a better understanding of the degradation mechanism of silk
textiles and thus contribute to the formulation of vigorous ap-
proaches to preserving valuable ancient silks.
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